Post-Transcriptional Regulation of Toll-Interacting Protein in the Intestinal Epithelium

نویسندگان

  • Yutaka Sugi
  • Kyoko Takahashi
  • Kenta Kurihara
  • Kazuaki Nakata
  • Hikari Narabayashi
  • Yuji Hamamoto
  • Makoto Suzuki
  • Masato Tsuda
  • Shigemasa Hanazawa
  • Akira Hosono
  • Shuichi Kaminogawa
چکیده

Immune responses against gut microbiota should be minimized to avoid unnecessary inflammation at mucosal surface. In this study, we analyzed the expression patterns of Toll-interacting protein (Tollip), an inhibitor of TLRs and IL-1 family cytokine-related intracellular signaling, in intestinal epithelial cells (IECs). Comparable mRNA expression was observed in murine small and large IECs (S-IECs and L-IECs). However, Tollip protein was only detected in L-IECs, but not in S-IECs. Similar results were obtained in germ-free mice, indicating that L-IEC-specific TOLLIP expression does not depend on bacterial colonization. Next, to understand the mechanisms underlying the post-transcriptional repression of Tollip, 3´-UTR-mediated translational regulation was evaluated. The region +1876/+2398 was responsible for the repression of Tollip expression. This region included the target sequence of miR-31. The inhibition of miR-31 restored the 3´-UTR-meditaed translational repression. In addition, miR-31 expression was significantly higher in S-IECs than in L-IECs, suggesting that miR-31 represses the translation of Tollip mRNA in S-IECs. Collectively, we conclude that the translation of Tollip is inhibited in S-IECs, at least in part, by miR-31 to yield L-IEC-specific high-level expression of the Tollip protein, which may contribute to the maintenance of intestinal homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of epithelial proliferation induced by Eimeria acervulina infection in the duodenum may be associated with cholesterol metabolism

Cell proliferation in the intestine is commonly occurred during infection and inflammation to replace damaged enterocytes, and cholesterol as an essential constituent of cell membrane, is required for cell proliferation and growth. Here we found that coccidium-challenged (CC) chickens showed severe damages in intestinal structure, a significant increase of cell proliferation, and an activation ...

متن کامل

Gut Microbial Colonization Orchestrates TLR2 Expression, Signaling and Epithelial Proliferation in the Small Intestinal Mucosa

The gut microbiota is an environmental factor that determines renewal of the intestinal epithelium and remodeling of the intestinal mucosa. At present, it is not resolved if components of the gut microbiota can augment innate immune sensing in the intestinal epithelium via the up-regulation of Toll-like receptors (TLRs). Here, we report that colonization of germ-free (GF) Swiss Webster mice wit...

متن کامل

The study of microanatomy of intestinal epithelium in the Chinese soft-shelled turtle (Pelodiscus sinensis)

The microanatomy of the intestinal epithelium in the Chinese soft-shelled turtle (CST) was studied by light and transmission electron microscopy (TEM). The small intestinal epithelium (SIE) was single layered or pseudostratified. The enterocytes contained mitochondria or mitochondria and lipid droplets. The enterocytes were arranged tightly in the apical parts of epithelium and connected by des...

متن کامل

Potential roles of 5´ UTR and 3´ UTR regions in post-trans-criptional regulation of mouse Oct4 gene in BMSC and P19 cells

Objective(s):OCT4 is a transcription factor required for pluripotency during early embryogenesis and the maintenance of identity of embryonic stem cells and pluripotent cells. Therefore, the effective expression regulation of this gene is highly critical. UTR regions are of great significance to gene regulation. In this study, we aimed to investigate the potential regulatory role played by 5´UT...

متن کامل

Regulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice

Drought stress is one of the most determinative factors of agriculture and plays a major role in limiting crop productivity. This limitation is going to rising through climate changes. However, plants have their own defense systems to moderate the adverse effects of climatic conditions. MicroRNA-mediated post-transcriptional gene regulation is one of these defense mechanisms. The root endophyti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016